InGaP HBT Gain Block

Product Features

- DC 6000 MHz
- +19.5 dBm P1dB at 900 MHz
- +33.5 dBm OIP3 at 900 MHz
- 18.5 dB Gain at 900 MHz
- Single Voltage Supply
- Green SOT-86 SMT Package
- Internally matched to 50 Ω

Applications

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless

Product Description

The AG603-86 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG603-86 typically provides 18.5 dB gain, +33.5 dBm OIP3, and +19.5 dBm P1dB. The device combines dependable performance with consistent quality to maintain MTTF values exceeding 100 years at mounting temperatures of +85 °C & is housed in a SOT-8 industry-standard SMT lead-free/green/RoHS-compackage.

The AG603-86 consists of Darlington pair amplificusing the high reliability InGaP/GaAs HBT process logy and only requires DC-blocking capacitors, a and an inductive RF choke for operation.

The broadband MMIC amplifier can be various current and next generation who stechnolog such as GPRS, GSM, CDMA, and CDMA. In the AG603-86 will work for oth various a within the DC to 6 GHz frequency range states of the control of t

Functional Date m

Function	Pin No.
× 20	1
Old o Bias	3
ound	2, 4

Typical

1900

15.9

-18

-14

+19.2

+33.4

3.9

2140

15.3

-17

-13

+19.1

+32.8

4.0

900

18.2

-20

-17

+19.4

+33.7

3.8

500 18.9

-17

-21

+19.4

+34.1

3.8

cal rformance (1)

utput P1dB

Output IP3

Noise Figure

Units

MHz

dΒ

dΒ

dB

dBm

dBm

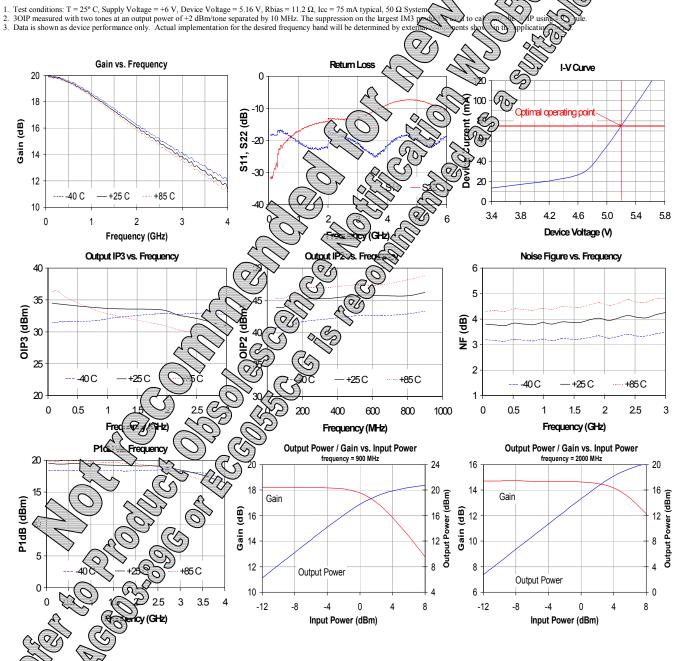
dΒ

Specifications (1)

Parameter	Units	Min	Ty Sax
Operational Bandwidth	MHz	DC	6000
Test Frequency	MHz		
Gain	dB	l (
Input Return Loss	dB		
Output Return Loss	dB	2	17
Output IP3 (2)	dBm ∠		+19.
Output IP2	dBm∠	0)	+3(4)
Output P1dB	dBr(\C	(V)	
Noise Figure			7/8 D
Test Frequency			J1900 C3
Gain		120	16.9
Output IP3 (2)	usm <		
Output P1dB	O_{dBr}		9 7.4
Device Voltage	v		5.16
Device Curren			75
$\sim \sim$			

- 1. Test conditions: T Supply Voltage $R_{bias} = 1$ 50 Ω System. 2. 3OIP measured will low less at an output set of +2 d Parton separated by 10 MHz. The
- suppression had M3 pro to calculate a 30IP using a 2:1 rule.

Absolute Maximum Rating


Parame	Rating	
Operativ Case Tel Cature	-40 to +85 °C	
Storago Mper (0)	-55 to +125 °C	
DC The e	+7 V	
Roant Power continuous)	+10 dBm	
O harrion To perature	+250° C	

Ordering Information

Part No.	Description
AG603-86	InGaP HBT Gain Block (lead-tin SOT-86 Pkg)
AG603-86G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-86 Pkg)

Typical Device RF Performance Supply Bias = +6 V, R_{bias} = 11.2 Ω , I_{cc} = 75 mA

Frequency	MHz	100	500	900	1900	2140	2400	350
S21	dB	19.3	18.9	18.2	15.9	15.3	14.9	XX
S11	dB	-18	-17	-20	-18	-17	-18	() ~ \
S22	dB	-31	-21	-17	-14	-13	-13/	\mathcal{S}
Output P1dB	dBm	+19.4	+19.4	+19.4	+19.2	+19.1	CW/	ر17.5 (ک
Output IP3	dBm	+34.5	+34.1	+33.7	+33.4	+32.8		
Noise Figure	dB	3.8	3.8	3.8	3.9	4.0		

Typical Device RF Performance (cont'd) Supply Bias = +8 V, R_{bias} = 38 Ω , I_{cc} = 75 mA Output IP3 vs. Frequency Gain vs. Frequency 20 18 OIP3 (dBm) Gain (dB) 16 12 +25 C +85 C -40 C +25 C +85 C 20 10 0 0.5 1.5 800 1000 0 3 Frequency (GHz) Frequency (GHz) P1dB vs. Frequency 20 15 P1dB (dBm) -40 C +25 C +85 C 0 0.5 1 1.5 25 Frequency (GHz) Frequency 452525AW REV2 452525PC REV2 **GND** Bias +VCC RF IN RF OUT AGXXX-86 EVAL. BRD. WWW.WJCI.COM WJCI 1-800-951-4401

Referen			ency (MH	z)		
Designat	50	900	1900	2200	2500	3500
L1	HACE GALO	68 nH	27 nH	22 nH	18 nH	15 nH
C1, C2, C4	.0. SµF 7000 pF	100 pF	68 pF	68 pF	56 pF	39 pF

Recommen

its are dependent upon the intended frequency of operation.
on the evaluation board to achieve optimal broadband performance:

~~	Ref (1)	Value / Type	Size
	L/2/20	39 nH wirewound inductor	0603
CLOSS	200	56 pF chip capacitor	0603
	(D)	0.018 μF chip capacitor	0603
(V)	A	Do Not Place	
\gg \sim	GR1	10.0 Ω 1% tolerance	0805
, <i>\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}</i>			

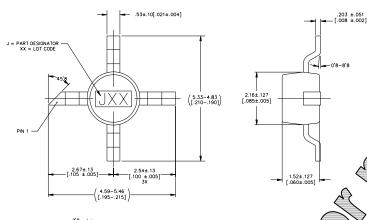
Decommended Rise Decistor Values

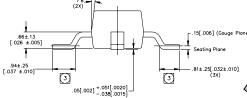
S upply Voltage	R1 value	Size
6 V	11.2 ohms	0805
7 V	24.5 ohms	1210
8 V	38 ohms	1210
9 V	51 ohms	2010
10 V	65 ohms	2010
12 V	91 ohms	2512


The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +6 V. A 1% tolerance resistor is recommended.

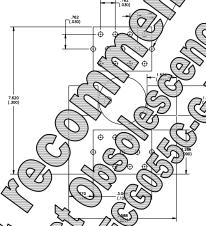
Typical Device Data

S-Parameters ($V_{device} = +5.16 \text{ V}$, $I_{CC} = 75 \text{ mA}$, $T = 25^{\circ} \text{ C}$, calibrated to device leads)


	device	, , ,	,					
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	<u> </u>	SE2 (TE 9)
50	-18.23	174.74	19.89	177.21	-22.60	-0.68	(0)	OF
250	-18.28	162.59	19.75	165.56	-22.48	-0.53	(V P)	\$ 67
500	-17.36	147.85	19.50	151.86	-22.44	-0.61	-27.2T	Z-1¥8.15
750	-18.86	130.86	19.09	138.79	-22.46	-1.53	P 19.11	V1465300
1000	-20.20	108.49	18.57	126.44	-22.42	~-2.(-\nabla/\lambda)	-1787	-144
1250	-21.82	84.57	18.05	114.78	-22.30	740	28/\Z	-1000
1500	-22.73	53.36	17.47	103.87	-22.14	$\langle \mathcal{O} \rangle$	74 V	255.14
1750	-22.84	27.48	16.86	93.52	-21.87	\ \		-180.07
2000	-21.25	9.33	16.26	83.93	-21.75	-4.47	<u>}</u> √3.98 €/	% 166.54
2250	-18.04	-0.39	15.69	75.43	-21.40	5.54	13.3	⇒ _{-159.08}
2500	-18.33	-7.20	15.34	68.57	-20,85	5.78	13.9	-168.98
2750	-19.57	-12.19	14.80	59.90	-2(♡ /△	2.53		177.37
3000	-21.03	-10.51	14.30	51.45		1/2	VE 133	159.43
3250	-23.01	-10.01	13.83	43.05	(, 60)	(1)	2 7.23	143.27
3500	-24.57	13.25	13.33	34.97	82	-10:08 _ '	211.07	128.02
3750	-24.13	41.90	12.78	26.51	-19.65	N8.64 PO	> -10.02	115.52
4000	-21.65	64.98	12.28	18.6	>-1925 (S	V-22.08	-8.79	106.49
4250	-19.84	74.82	11.83	(O)5	-103	-25	-8.01	99.24
4500	-18.66	82.81	11.40		-1000	~-28 6 7	-7.55	94.08
4750	-18.43	89.31	10.99	-3.54	-100	(6)9.96	-7.34	90.85
5000	-19.43	99.10	10.68	0.20	X (U)22 X (35.34	-7.50	88.62
5250	-21.15	118.11	10.43	V 18.78	77.98	-37.98	-7.93	86.82
5500	-22.30	145.00	10.25	-23.4) -17.55	-40.47	-8.80	85.75
5750	-20.49	175.26	100	-30.20	-17	-44.86	-9.84	84.21
6000	-18.75	-172.37		(Q) 5		-47.67	-11.15	80.32



AG603-86 (SOT-86 Package) Mechanical Informatic


This package may contain lead-bearing materials. The plating material on the leads is S

Outline Drawing

Land Patte

Therma vecific ons

Opera Temp 40 to +85 °C
Thermal Restance The Grant Control of the Control of the

- 1. The thermal rence is the hottest part of the junction and (pin 2 or 4).
- 2. This correspons to pical biasing condition of +5.16V 5 mA post of C case temperature. A minimum MTTI william hours is achieved for jun post of pine post of pi

o ct o mine

The market a "J' numeric follow a two package.

Die an vel Cifical us for this part are webs: in the "Application

MS ESD Rating

Caution! ESD sensitive device.

Rating: Class 0 Passes at 150 V

Standard: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class II

Value: Passes at 250 V

Test: Charged Device Model (CDM) Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 1

Standard: JEDEC Standard J-STD-020A

Mounting Config. Notes

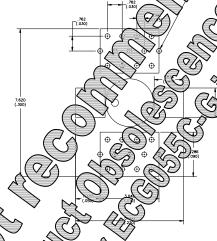
- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
 Mounting screws can be added near the part to fasten the
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.

.94±.25 [.037 ±.010]


3

.05[.002] +.051[.0020] -.038[.0015]

AG603-86G (Green / Lead-free Sot-86 Package) Mechanical


This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflection of the plant and added (maximum 245°C reflection of the plant and added the

Land Patte

3

81±.25[.032±.010]

Therm Spec Sation

Operating Case Casture 40 to +85 °C

Thermal Resistan Rth (10 206 °C/W

Junction Temperature, 70 165 °C

1. The thermal transparenced from the hottest part of the justion to the ond lead (pin 2 or 4).

2. This consond the typical biasing condition of +5 C case temperature. A more multiple of 1 million hours is achieved for the contemporatures below 177 °C.

In tor for heavy a trongit numeric code on the surface whice package.

Tape pecifications for this part are local on the west in the "Application

MS ESD Rating

Caution! ESD sensitive device.

Rating: Class 1C

Test: Passes at 1000 V min.
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV

Value: Passes at 1000 V min.
Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 3 at +260° C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010")
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
 Mounting screws can be added near the part to fasten the
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction
- 6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.